Optimizing three-dimensional point spread function in lensless holographic microscopy
نویسندگان
چکیده
منابع مشابه
Three-dimensional holographic fluorescence microscopy.
Most commonly used methods for three-dimensional (3D) fluorescence microscopy make use of sectioning techniques that require that the object be physically scanned in a series of two-dimensional (2D) sections along the z axis. The main drawback in these approaches is the need for these sequential 2D scans. An alternative approach to fluorescence imaging in three dimensions has been developed tha...
متن کاملCommon-path phase-shifting lensless holographic microscopy.
We present an approach capable of high-NA imaging in a lensless digital in-line holographic microscopy layout even outside the Gabor's regime. The method is based on spatial multiplexing at the sample plane, allowing a common-path interferometric architecture, where two interferometric beams are generated by a spatial light modulator (SLM) prior to illuminating the sample. The SLM allows phase-...
متن کاملEnhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function.
We present a technique to systematically measure the change in the blurring function of an optical microscope with distance between the source and the coverglass (the depth) and demonstrate its utility in three-dimensional (3D) deconvolution. By controlling the axial positions of the microscope stage and an optically trapped bead independently, we can record the 3D blurring function at differen...
متن کاملFluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments
In three-dimensional fluorescence microscopy the point spread function (PSF) changes with depth, inducing errors in the restored images when these variations are neglected during the deconvolution of thick specimens. Some deconvolution algorithms have been developed to take the depth variations of the PSF into consideration. For these algorithms, the accuracy of the estimated structures depends...
متن کاملDiffractive digital lensless holographic microscopy with fine spectral tuning.
We experimentally demonstrate an all-diffractive optical setup for digital lensless holographic microscopy with easy wavelength line selection and micrometric resolution. In the proposed system, an ultrashort laser pulse is focused with a diffractive lens (DL) onto a pinhole of diameter close to its central wavelength to achieve a highly spatially coherent illumination cone as well as a spectra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2017
ISSN: 1094-4087
DOI: 10.1364/oe.25.029026